In a paper published in the March 29 issue of the journal Nature, the scientists describe the emergence of "spontaneous coherence," "spin textures" and "phase singularities" when excitons -- the bound pairs of electrons and holes that determine the optical properties of semiconductors and enable them to function as novel optoelectronic devices -- are cooled to near absolute zero. This cooling leads to the spontaneous production of a new coherent state of matter which the physicists were finally able to measure in great detail in their basement laboratory at UC San Diego at a temperature of only one-tenth of a degree above absolute zero.

The discovery of the phenomena that underlie the formation of spontaneous coherence of excitons is certain to produce a better scientific understanding of this new state of matter. It will also add new insights into the quirky quantum properties of matter and, in time, lead to the development of novel computing devices and other commercial applications in the field of optoelectronics where understanding of basic properties of light and matter is needed

then compare the concepts to the 'cosmological constant' of the 'dark energy' idea.

Clocking an Accelerating Universe: First Results from BOSS
ScienceDaily (Mar. 30, 2012) Some six billion light years ago, almost halfway from now back to the big bang, the universe was undergoing an elemental change. Held back until then by the mutual gravitational attraction of all the matter it contained, the universe had been expanding ever more slowly. Then, as matter spread out and its density decreased, dark energy took over and expansion began to accelerate

The origin of BAO, the regular clustering of ordinary matter (called "baryons" by astronomical convention), was the pressure of sound waves (thus "acoustic") moving through the universe when it was still so hot that light and matter were mixed together in a kind of soup, in which the sound waves created areas of regularly varying density ("oscillation")

What if dark energy isn't an unknown force or substance, but instead a shortcoming of Albert Einstein's General Theory of Relativity, our best-yet theory of gravity? General Relativity predicts how fast galaxies should be moving toward one another in galaxy clusters, and, in the aggregate, how fast the structure of the universe should be growing. Any departure from its predictions would mean the theory is flawed.

what's the 'pattern'?