Our Galaxy's Next Supernova

Discussion in 'Science' started by OldMercsRule, Jan 30, 2012.

  1. OldMercsRule

    OldMercsRule Member

    Joined:
    Mar 20, 2011
    Messages:
    487
    Likes Received:
    20
    Trophy Points:
    18
    ""The diversity of the phenomena of nature is so great, and the treasures hidden in the heavens so rich, precisely in order that the human mind shall never be lacking in fresh nourishment." -Johannes Kepler



    So said the man who, in 1604, discovered the supernova that was the last to be seen, visually, within our own galaxy. Although it's likely that two others occurred subsequently, they were not visible to human eyes, and only with powerful telescopes were their remnants discovered.

    But earlier this week, the first supernova of the year was discovered, in a galaxy 25 million light years away, NGC 3239. The supernova, indicated below, is now known as SN 2012a.

    With a typical rate of about one supernova per galaxy per century, one can't help but wonder, as one of our perennial commenters did, what we'd see -- and how quickly we'd manage to see it -- if a supernova went off in our own galaxy.

    Remember, now, there are two ways we can have a supernova, but both ways involve a runaway nuclear fusion reaction, giving off a tremendous amount of light and energy. But most of the energy, perhaps surprisingly, isn't in the form of light! Let's take you inside a star that goes supernova during those critical few seconds.

    Although there are shocks and heat that are produced, you'll see that the interior reactions produce neutrinos, nearly all of which do not interact with the outer layers of the star! A few of them do, as do all of the protons, neutrons and electrons produced, and the overall production isn't instantaneous. But while it takes some time -- a couple of hours -- for the shock to reach the outer surface of the dying star, the neutrinos make it out almost immediately!

    What this means is that when we have a star go supernova, neutrinos get emitted from it before the light does! We actually discovered this, firsthand, back in 1987.

    When supernova 1987a went off just 168,000 light years away, it was close enough -- and we had enough neutrino detectors operating -- that we detected 23 (anti)neutrinos over a timespan of about 13 seconds. The largest detector, Kamiokande-II, contained 3,000 tons of water and detected 11 antineutrinos.

    Today, the detector that sits in the same spot, Super Kamiokande-III, contains 50,000 tons of water and contains over 11,000 photomultiplier tubes. (There are many other excellent neutrino detectors around the world, but I'm focusing on this one in particular as an example.)

    This setup is so amazing because it can not only detect neutrinos, but it can reconstruct the direction, energy, and point-of-interaction of even a single neutrino fortunate enough to interact with any one particle in those 50,000 tons of water!

    Depending on where a potential supernova goes off in our galaxy, we would expect Super Kamiokande-III to see anywhere from a few thousand antineutrinos (for something on the other side of the galaxy) to over ten million of them, all in the timespan of just 10-15 seconds!

    Neutrino detectors from all over the world would see a flood of detections like this, all at the same time, all coming from the same direction. At that point, we'd have something on the order of two-to-three hours to identify the direction of origin of those neutrinos, and point our telescopes towards that direction to try and obtain an optical view of the supernova -- for the very first time -- from its very beginning!

    The closest supernova since 1987 was this one from last year, which we managed to catch just half a day after ignition, which is remarkable.

    We've gotten very close -- mostly by good fortune -- with a very intense hypernova back in 2002.

    Even so, we didn't get to first observe this one, SN 2002ap, until 3-4 hours after first ignition. If the supernova that eventually comes is a type Ia supernova -- which originates from a white dwarf -- we have no way of predicting where in the galaxy that will occur. White dwarfs are simply too abundant, and the locations of almost all of them are simply unknown, and thought to be distributed all over the galaxy.

    But if this originates from a very massive star whose core collapses under its own gravity (i.e., a type II supernova), we have a number of really good candidates, and some outstanding places to look.

    Most obvious is the galactic center, the location of the Milky Way's last known supernova, and also the location of the most massive stars ever discovered within our galaxy. We're certainly going to have many type II supernovae originating here over the next 100,000 years, but we have no way of knowing when we'll see the next one. As you look at the above picture, take a moment to appreciate that it's very likely already happened, and we're just waiting for the neutrinos (and then the light) to get here!

    But there are closer candidates than the galactic center.

    Look inside one of the great, star forming nebulae in our galaxy, and you're going to find some of the hottest, youngest stars you're going to find anywhere in the Universe. This is where the ultra-massive stars live, and in particular, the Eagle Nebula, above, may be home to an extremely recent supernova. The Eagle Nebula, the Orion Nebula, and many other regions filled with new stars are all great places to anticipate the next supernova.

    But what about known, individual stars? While there are many good candidates, we have two in particualr that we can't help but talk about.

    Eta Carinae, in the very last stages of its life, could literally go supernova at any second. But it may also live hundreds, thousands, or even tens of thousands more years before it does so. Still, if we get a flood of antineutrinos originating from anywhere near its position in space, this will be the very first place we point our telescopes!

    But unlike all of these candidates that are many thousands of light-years away, we have one good one that's much closer. In fact, it's the closest supernova candidate we have!

    Say hello to Betelgeuse, a red supergiant just 640 light-years distant. Betelgeuse is so gigantic that it literally is the diameter of Saturn's orbit around the Sun! If Betelgeuse went supernova, our neutrino detectors around the globe would detect -- all told -- somewhere in the vicinity of a hundred million (anti)neutrinos, which is more neutrinos of any type than have ever been detected in the history of the world, combined.

    But unless it's one of these known candidates that goes supernova, how will we tell whether it's a type Ia or a type II supernova?

    We can always wait, I suppose. Supernovae of different types have very distinct light-curves, and how the light dies off after it's reached its peak brightness will tell us what type of supernova we had.

    But if something this exciting happens, I'm not going to have that kind of patience. Luckily, I won't need it, because a supernova within our galaxy would likely be the very first detectable observation for the newest type of astronomy: Gravitational-Wave Astronomy!

    Undisturbed by the presence of, well, anything, gravitational waves from a supernova explosion should pass through the intervening star, any gas, dust, or matter completely undisturbed, arriving at the same time the front end of the (anti)neutrino pulse arrives! The wonderful thing is that -- according to our best simulations of general relativity -- type II (core-collapse) and type Ia (inspiraling white dwarfs) should give vast different signals for gravitational waves!

    If we have a type Ia supernova, we expect to see three separate regions to our signal.

    The inspiral phase should give a periodic pulse that increases in frequency and magnitude as the white dwarfs reach their final stage of their separation. As the ignition occurs, there should be a spike in the signal, followed by a "ringdown" phase as the ripples go away. Very distinctive.

    But if we have a type II supernova, from a super-massive collapsing star, we're only going to see two interesting things.

    Just a huge spike -- where the supernova itself occurs -- just a tenth of a second after the core collapses, followed by a very rapidly dying (within 0.02 seconds) ringdown. And so if we want to know what we saw, all we need to do is extract the telltale signal from gravitational waves!

    And if the galaxy's next supernova were to happen today, this is what we'd see!"

    http://scienceblogs.com/startswithabang/2012/01/our_galaxys_next_supernova.php

    Hmmmmmmm..... I found this a good read as well as a great review. Click the linc fer pics n' graphs n' such!!!!
     
  2. waltky

    waltky Well-Known Member

    Joined:
    Jan 26, 2009
    Messages:
    30,071
    Likes Received:
    1,204
    Trophy Points:
    113
    Gender:
    Male
    Granny says when Uncle Ferd passes gas, dat oughta qualify as cosmic wind...

    Astronomers Measure Record Cosmic Winds Near Small Black Hole
    February 23, 2012 - The U.S. space agency says cosmic winds generated by a disk of cosmic gas spinning around a small-scale type of black hole are the fastest ever recorded near such an object.
    See also:

    Astronomers Say Galaxy May Be Awash with Homeless Planets
    February 24, 2012 - Astronomers say the Milky Way may be swarming with nomad planets wandering through space instead of orbiting a host star, and that the galaxy may have a greater number of unmoored planets than stars.
     
  3. waltky

    waltky Well-Known Member

    Joined:
    Jan 26, 2009
    Messages:
    30,071
    Likes Received:
    1,204
    Trophy Points:
    113
    Gender:
    Male
    Carbon-14 spike mystery may be solved...

    Ancient text may solve cosmic mystery
    June 28`12 (UPI) -- An ancient text about a "red crucifix" seen in British evening skies more than 1,200 years ago could explain a mysterious radiation spike, U.S. scientists say.
     
  4. mamooth

    mamooth Well-Known Member Past Donor

    Joined:
    Jan 16, 2012
    Messages:
    6,416
    Likes Received:
    2,182
    Trophy Points:
    113
    Gender:
    Male
    I'll bring up WR 104, an unstable Wolf-Rayet star 8000 light years away that could go boom (or has already gone boom, but we don't know it yet), and produce a gamma ray burst that could wipe out life on earth. It's probably not aligned quite right to focus the beam on earth (it comes out of both poles in a narrow beam), but you never know.

    http://en.wikipedia.org/wiki/WR_104
     
  5. wyly

    wyly Well-Known Member

    Joined:
    Nov 25, 2008
    Messages:
    13,857
    Likes Received:
    1,159
    Trophy Points:
    113
    mmm, your optimism is so comforting...
     
  6. waltky

    waltky Well-Known Member

    Joined:
    Jan 26, 2009
    Messages:
    30,071
    Likes Received:
    1,204
    Trophy Points:
    113
    Gender:
    Male
    Supernovas are traditionally named after composers...
    :cool:
    Supernova 'Mingus' could shed light on dark energy
    10 January 2013 - Astronomers have spotted the most distant supernova ever seen.
     
  7. waltky

    waltky Well-Known Member

    Joined:
    Jan 26, 2009
    Messages:
    30,071
    Likes Received:
    1,204
    Trophy Points:
    113
    Gender:
    Male
    In about 5,000 years...
    :roll:
    Betelgeuse Hurdles Toward Massive Collision
    January 23, 2013 : Betelgeuse - the nearest red supergiant to Earth - is about 1,000 times the diameter of our Sun and 100,000 times more bright
     
  8. waltky

    waltky Well-Known Member

    Joined:
    Jan 26, 2009
    Messages:
    30,071
    Likes Received:
    1,204
    Trophy Points:
    113
    Gender:
    Male
    Supernova may come from white dwarf...
    :confusion:
    Dead stars 'can re-ignite' and explode
    28 August 2014 ~ Astronomers have shown that dead stars known as white dwarfs can re-ignite and explode as supernovas.
     
  9. waltky

    waltky Well-Known Member

    Joined:
    Jan 26, 2009
    Messages:
    30,071
    Likes Received:
    1,204
    Trophy Points:
    113
    Gender:
    Male
    It could be the most powerful supernova ever detected...
    :omg:
    Colossal star explosion detected
    Astronomers have seen what could be the most powerful supernova ever detected. The exploding star was first observed back in June last year but is still radiating vast amounts of energy.
     

Share This Page